Dawn Pisturino's Blog

My Writing Journey

Official Anthology Launch Date: June 18, 2022

Wounds I Healed: The Poetry of Strong Women anthology officially launches on Amazon and Kindle on Saturday, June 18, 2022.

Here’s the official Amazon description:

Award-winning authors, Pushcart nominees, emerging poets, voices of women and men, come to the fore in this stunning, powerful, and unique anthology. Their poems testify to the challenges that women face in our society, and to their power to overcome them. A memorable collection of over 200 poems by more than 100 authors, this anthology is a must-have for anyone. We all can benefit from the poetry of survival, and of healing. We all can benefit from the experiences so beautifully evoked in this book. We can all come together to emerge triumphant from pain.”

Editor and Curator: Gabriela Marie Milton

Publisher: Experiments in Fiction/Ingrid Wilson

Artwork: Nick Reeves

Get YOUR copy soon!

Dawn Pisturino

June 17, 2022

20 Comments »

Reprise: Fabulous First Lines

The first line of your novel or story can make it or break it. Are your words intriguing? Compelling? Do they make the reader hungry for more? Consider these first lines written by well-known authors. How do they make you feel? What images come into your head? Do you want to read more?

1. “Sometimes Sonny felt like he was the only human creature in the town.” Larry McMurtry, The Last Picture Show

2. “It was about eleven o’clock in the morning, mid October, with the sun not shining and a look of hard wet rain in the clearness of the foothills.” Raymond Chandler, The Big Sleep

3. “When he woke in the woods in the dark and the cold of the night he’d reach out to touch the child sleeping beside him.” Cormac McCarthy, The Road

4. “The alchemist picked up a book that someone in the caravan had brought.” Paul Coelho, The Alchemist

5. “Renowned curator Jacques Sauniere staggered through the vaulted archway of the museum’s Grand Gallery.” Dan Brown, The Da Vinci Code

6. “When a traveller in north central Massachusetts takes the wrong fork at the junction of the Aylesbury pike just beyond Dean’s Corners he comes upon a lonely and curious country.” H.P. Lovecraft, The Dunwich Horror

7. “On these cloudy days, Robert Neville was never sure when sunset came, and sometimes they were in the streets before he could get back.” Richard Matheson, I Am Legend

8. “The cat had a party to attend, and went to the baboon to get herself groomed.” David Sedaris, squirrel seeks chipmunk

9. “‘To be born again,’ sang Gibreel Farishta tumbling from the heavens, ‘first you have to die.'” Salman Rushdie, The Satanic Verses

10. “The witnesses standing at the edge of the field were staring in horrified silence, too stunned to speak.” Sidney Sheldon, The Doomsday Conspiracy

11. “I had this story from one who had no business to tell it to me, or to any other.” Edgar Rice Burroughs, Tarzan of the Apes

12. “Amerigo Bonasera sat in New York Criminal Court Number 3 and waited for justice; vengeance on the men who had so cruelly hurt his daughter, who had tried to dishonor her.” Mario Puzo, The Godfather 

13. “I see . . .” said the vampire thoughtfully, and slowly he walked across the room towards the window.” Anne Rice, Interview with the Vampire

14. “Almost everyone thought the man and the boy were father and son.” Stephen King, ‘Salem’s Lot

15. “Scarlett O’Hara was not beautiful, but men seldom realized it when caught by her charm as the Tarleton twins were.” Margaret Mitchell, Gone With the Wind

And the list goes on, ad infinitum. But you get the idea.

Dawn Pisturino

April 24, 2012; June 15, 2022

Copyright 2012-2022 Dawn Pisturino. All Rights Reserved.

27 Comments »

Reprise: A Writer 24/7

(Turn of the 20th century writer’s corner – Bonelli House Museum, Kingman, Arizona. Photo by Dawn Pisturino.)

Adopting the writer’s mantle places us instantly in the spotlight. Everything we say, write, and do is being evaluated and judged by people we don’t even know.

With this in mind, it’s important to display our best writing at every opportunity.

I recently read a blog post by an English writer that was poorly formatted, riddled with errors, and unprofessional-looking. The purpose of the blog was to dispense writing advice to budding young authors. But what can a young author learn from run-on sentences and words that blend into one another with no punctuation or spaces? Needless to say, I no longer follow that blog.

Many self-proclaimed authors haunt Facebook and other social media sites. They promote their books with quickly-composed, ungrammatical sales pitches that reflect poorly on their abilities as writers. My thought is this: if they can’t write a simple post on Facebook, how can they write the next Great American novel? The answer is obvious.

E-mail tends to be a casual form of communication, but some people take it for granted that it’s okay to write in texting jargon and incomplete sentences. Clear, concise communication should be even more important when writing e-mails. I check my grammar and spelling every time I send out an e-mail because I want my readers to see me as a real writer.

My elderly aunt fills her hand-written letters with poetic descriptions of the seasons and countryside where she lives. She’s not a writer, but she knows how to write. She knows how to turn a phrase and color a description so that it sticks in my head. She makes me imagine that once upon a time she wrote poetry in some dark garret. That reminds me–I need to ask her!

Writing is a 24/7 job. And everything we compose should reflect our abilities as a writer. Our readers expect it. Our profession demands it.

Published in the July-August 2012 issue of Working Writer.

Dawn Pisturino

June 13, 2022

Copyright 2012-2022 Dawn Pisturino. All Rights Reserved.

26 Comments »

Health Information Technology Security

Abstract       

Due to threats of cybercrime and malware infestations, healthcare organizations all across the world are now forced to upgrade and monitor their cybersecurity systems on a constant basis for the sake of protected patient health information, financial stability, and uninterrupted operations.  Money that would normally be spent on patient care is being diverted to IT professionals, who are hired to keep cybersecurity systems intact.

Health Information Technology Security       

Protecting patient health information, as mandated by law, has become a priority for healthcare facilities all around the world.  From doctors’ offices to medical devices to ransomware, the healthcare industry is under attack by cyber threats that compromise the health, safety, and privacy of patients everywhere.       

Nurses are at the forefront in efforts to secure patient and employee information, promote responsible use of computer technology, and report possible threats and violations in a timely manner.

Cybersecurity is Crucial       

Almost every day, a news story comes out that a corporation, nonprofit organization, or government agency has been hacked.  The healthcare industry is no different, and the attacks are becoming more frequent and more serious.  This is such an important issue at the hospital where I work, it seemed pertinent to write a paper on it.  Our IT department frequently makes us aware of e-mail threats, blocks blog sites, mandates automatic logoffs and timed reboots, requires frequent password changes, and regularly reminds us to turn off our computers, log off when finished, and to not share passwords.  Cybersecurity is crucial to protecting patient health information and network systems.

All Healthcare Organizations are at Risk       

Smaller healthcare clinics and doctors’ offices must follow the same mandates as larger organizations when it comes to protecting patient health information.  Healthcare personnel divulging protected information to unauthorized people and hackers using stolen information in identity theft scams are huge concerns that must be addressed (Taitsman, Grimm, & Agrawal, 2013).  Not only must these smaller organizations take appropriate measures to secure patient health information, but personnel must strictly follow policies and protocols.  Simple safeguards, such as screening phone calls, logging off computers, shredding documents, background checks for employees, automatic logouts, and activity audits, protect and safeguard patients and organizations alike (Taitsman, Grimm, & Agrawal, 2013).  Insurance companies, too, must safeguard patients against fraudulent claims.  Consumers must be educated in ways to protect their own healthcare information (Taitsman, Grimm, & Agrawal, 2013).       

Nurses all across the healthcare spectrum are increasingly required to use computer technology, and they must honor patient privacy, confidentiality, and consent while doing so.  Use of the Internet opens the doorway to viruses, worms, adware, spyware, and other forms of malware (Damrongsak & Brown, 2008).  Something as simple as using a shared address book can infect an entire system.  Logging off the computer when the nurse has finished and frequently backing up data can prevent unauthorized intrusions and corrupted data (Damrongsak & Brown, 2008).  Most medical facilities use an intranet, or closed system, in addition to the Internet, that restricts data to a smaller group of people.  Firewalls, encryption, and the use of virtual private networks provide additional security (Damrongsak & Brown, 2008).       

Large government agencies, such as the Veterans Administration, have increased efforts to stave off cyber-attacks, which compromise patient health information and medical devices.  IT specialists have removed medical devices from the VA hospital’s main network systems and connected them to virtual-local area networks (VLANs) (Rhea, 2010).  Without access to the Internet, these devices can be used without fear of attack.  In the past, the main focus has been on identity theft.  But with the rise of international terrorism, there is a growing fear that medical devices may be hacked and used to intentionally harm patients (Rhea, 2010).  Healthcare IT systems have already been crippled by hackers looking to profit from cybercrime.  In 2009, healthcare facilities around the world found medical devices infected with the Conficker virus (Rhea, 2010).  Downtime caused by malware is expensive and inconvenient.  Hospitals are forced to spend money on security that normally would have gone to patient care (Rhea, 2010).  FDA regulations are also a hindrance to quick development of security patches (Rhea, 2010).       

According to author W.S. Chee (2007), a member of the Department of Diagnostic Imaging at K.K. Women’s and Children’s Hospital in Singapore, medical devices connected to a hospital’s network system can lead to critical threats and infestations of malware in these devices.  Hospitals need to act proactively to prevent intrusions and respond immediately if a system becomes infected (Chee, 2007).  Equipment vendors play a huge role because they supply the security measures which protect medical devices (Chee, 2007).  But they can be slow in providing updates and patches.  The FDA, furthermore, determines when and how changes can be made to biomedical equipment systems.  This places the burden on hospitals to protect themselves (Chee, 2007).       

Thomas Klein (2014), managing editor of Electronic Medical Device Technology, asserts that intentional sabotage of medical devices is only a matter of time.  According to researchers, vulnerabilities have been found in infusion pumps, x-ray machines, cardiac defibrillators, and other devices (Klein, 2014).  Since these devices are frequently connected to the Internet, they are vulnerable to malware.  If the network systems are not fully protected, the devices are subject to malicious attack.  The use of USB ports opens a doorway to security breaches and malware (Klein, 2014).  The risk is so great the FDA became involved and now requires that manufacturers consider cybersecurity risks when developing new products (Klein, 2014).       

The expansion of healthcare information technology improves profitability while exposing healthcare facilities to greater risks (Elliot, 2005).  Facilities must create and enforce policies that secure patient health information across all forms of networks and technology.  One solution for managing remote devices is the use of on-demand security services that cease to work once the remote device is no longer in use (Elliot, 2005).  The problem, then, is security on the other end, where patient health information can be leaked or accessed by the user.  This is called post-delivery security (Elliot, 2005).  Solutions include user malware protection, restrictions on use of data, and audits on computer use.  Developing and enforcing security policies that protect patient health information, especially information transmitted to remote devices, is tantamount to avoiding security breaches and corrupted data (Elliot, 2005).       

The latest, and most serious, threat comes in the form of professional IT criminals who use ransomware to extort money from hospitals (Conn, 2016).  One such threat, Locky, acts through ordinary-looking e-mail (Conn, 2016).  When opened, a virus activates software that encrypts the hospital’s IT system.  Then, a window pops up with a ransom demand.  Samas, another threat, uploads encryption ransomware through a hospital’s Web server (Conn, 2016).  A more sophisticated ransomware, CryptoLocker, demands bitcoin as payment because it is nearly impossible to trace (Conn, 2016).  Once paid, the criminals unlock the data in an infected system.  But, should hospitals pay in the first place?  Cybersecurity has become a booming business, with medical facilities now being forced to employ their services.  There is a major concern that medical devices will be the next systems to be hit by cybercriminals (Conn, 2016).

Topic Availability

This topic, as it relates to Nursing Informatics, is too important to ignore.  I used seven resources from scholarly and peer-reviewed publications for this paper.  I pulled my resources primarily from CINAHL and ProQuest.  I found enough materials to give me a broad overview of the topic, but I was disappointed that more current articles could not be found.  Technology changes so rapidly that even a few months can make a difference in security innovations.  I used both the basic and advanced search features and the key words “medical device malware security.”

Information Availability 

This information is available in scholarly and peer-reviewed journals and other publications.  Although the information was geared toward professionals, some publications include short articles that educate the general public about cybersecurity and protecting patient health information.  Nurses benefit from all of these resources because many do not understand the extent of the threat.

Personal Views 

The information I read shocked me (cyberterrorism), confirmed what I see our IT specialists changing at my hospital, and disturbed me (ransomware cybercrime.)  The general public does not seem to be aware of these threats.  As a nurse who uses computer technology every day, I was not aware of the seriousness of this problem.  It never occurred to me that a glucometer or infusion pump could be infected with a virus or that an unscrupulous person would deliberately sabotage somebody’s pacemaker.  When I mention this to other nurses, they are equally dismayed by the possibilities.  They always ask, “Why would somebody maliciously hack into a medical device?”  For people who devote their lives to saving people, the idea is unthinkable.       

The changing landscape in healthcare makes it crucial that ALL medical personnel understand the seriousness of the threats.  As technology becomes more sophisticated, so do the means by which cybercriminals hack into and infect network systems.  Information is compromised, and patient health and well-being are put at risk.

Conclusion

In conclusion, whether it’s a small private practice or a large healthcare system, the increased use of technology poses significant threats to protected patient health information, medical devices, and cybersecurity systems.  Users all across the healthcare spectrum have a duty to behave responsibly when accessing patient records, divulging information, searching the Internet, managing e-mail and faxes, and interacting with colleagues.  Nurses should provide feedback and input about vulnerabilities in security policies and protocols for the protection of themselves and their patients.  They must educate themselves about current threats so they can adapt their practice to avoid unintentional security breaches.  Nurses can also educate their patients in the use of computer technology, accessing patient portals, and protecting patient health information.        

Technology will continue to be a driving force in healthcare.  Along with the downside comes the possibility of lower costs to facilities and patients, improved outcomes, more accurate measurements, increased research, and greater opportunities for nurses to expand their involvement and role in improving healthcare and healthcare informatics.  Requiring nursing students to study nursing informatics increases their awareness of the problems and benefits of  technology.  Hopefully, our physicians and administrators are being trained in this area, as well.  Health information technology specialists are enjoying a surge in employment opportunities as healthcare systems realize the importance of their specialty.  Technology is expensive, but the threats of cybercrime and cyber-attacks are more damaging.  

References

Chee, W.S. A. (2007). IT security in biomedical imaging informatics: The hidden vulnerability. Journal of Mechanics in Medicine and Biology, 7(1), 101-106.

Conn, J. (2016, April). Ransomware scare: Will hospitals pay for protection. Modern Healthcare, 46(15), 8-8.

Damrongsak, M., & Brown, K.C. (2008). Data security in occupational health. AAOHN

 Journal, 56(10), 417-421. Retrieved from 

http://search.proquest.com.resources.njstatelib.org/docview/219399232?accountid=63787.

Elliot, M. (2005, September). Securing the healthcare border. Health Management Technology,

 26(9), 32-35.

Klein, T. (2014, September). How to protect medical devices against malware. Operating Theatre Journal, 14-14.

Rhea, S. (2010, December). Cyberbattle: Providers work to protect devices, patients. Modern

 Healthcare, 40(50), 33-34.

Taitsman, J. K., Grimm, C. M., Agrawal, S. (2013, March). Protecting Patient privacy and data security. The New England Journal of Medicine, 368, 977-979. doi: 10.1056/NEJMp1215258. Retrieved from http://www.NEJM.org.

~

PowerPoint presentation shared at Flagstaff Medical Center in 2016. See it here on Dropbox:

https://www.dropbox.com/s/4o62z11sbzmg5tz/NUR-340%20Power%20Point%20Presentation%20Pisturino%20%281%29.pptx?dl=0

~

Dawn Pisturino
Thomas Edison State University

August 31, 2016; June 10, 2022
Copyright 2016-2022 Dawn Pisturino. All Rights Reserved.

(The references would not format properly.)

6 Comments »

“Wounds I Healed” Anthology Acceptance

I’m pleased and proud to announce that my poem, Boudica’s Soliloquy, has been accepted for publication in the upcoming Wounds I Healed: The Poetry of Strong Women anthology. I want to thank Gabriela Marie Milton (editor), Ingrid Wilson of Experiments in Fiction (publisher), and Nick Reeves for their hard work and dedication in bringing this project to fruition.

As you may have guessed, the poem is about Boudica, the fierce Celtic Queen of the Iceni tribe who reigned in the East Anglia region of Britain. In 60 C.E., she led a revolt against the Romans. Bravely driving a chariot against Roman forces, she fought for the liberation of her tribe and vengeance for the rape of her two daughters by Roman soldiers. Although defeated, she went down in history as a tragic figure and a British folk hero.

For some reason, when I heard about the anthology, Queen Boudica immediately popped into my head. She was a woman who lost everything but died with dignity and honor.

Please visit these sites:

Gabriela Marie Milton (Short Prose)

MasticadoresUSA//Gabriela Marie Milton, editor

Ingrid Wilson, Experiments in Fiction

Nick Reeves

Thank you!

Dawn Pisturino

May 9, 2022

Copyright 2022 Dawn Pisturino. All Rights Reserved.

49 Comments »

Chevron’s Operational Excellence Management System

       Chevron is a transnational energy corporation with offices and projects all over the world.  The company takes great pride in conducting business according to its core values.  The company’s vision and mission statement, Business Conduct and Ethics code, and Operational Excellence Management System overview can be easily found on the company website and elsewhere on the Internet.

       The Chevron Way encompasses the company’s vision and mission statement.  Chevron’s vision is “to be the global energy company most admired for its people, partnerships, and performance” (Chevron, 2018; MBA Tutorials, 2020).  This vision reflects its core values “to conduct business in a socially responsible and ethical manner.  We respect the law, support universal human rights, protect the environment, and benefit the communities where we work” (Chevron, 2020; MBA Tutorials, 2020).

       In accordance with the Chevron Way, the company strives to safely and efficiently supply energy products to its customers all over the world; hire the best-qualified people; become the best-qualified and highest-performing organization for its partners; and earn the respect and admiration of all of its stakeholders (MBA Tutorials, 2020).

       Chevron’s Business Conduct and Ethics Code outlines for employees the values and high standards of the company.  As Chairman and Chief Executive Officer Mike Wirth writes, “The Chevron Way is our touchstone for getting results the right way and establishes high standards for how we operate around the world” (Chevron, 2020).  The code emphasizes the company’s commitment to comply with the laws, regulations, and customs of every country in which it operates.  Violations can range from human rights to health and safety matters to bribery and fraud.  Consequently, the company encourages all employees to speak up about alleged violations of the code.  Since the company has a non-retaliation policy, employees who speak up in good faith are protected from retaliation by supervisors and peers (Chevron, 2020).

       In the United States, Chevron and other energy companies are regulated by the U.S. Department of Transportation (DOT).  In 1994, DOT established the Pipeline and Hazardous Materials Safety Administration (PHMSA) to regulate the United States’ 2.6 million miles of oil and gas pipelines.  As of 2018, oil provided 40 percent of U.S. energy, and natural gas provided 25 percent (U.S. Department of Transportation, 2020).

       Pipelines are considered a transportation system because they transport oil and gas to residential, commercial, and industrial customers.  Transporting energy products through pipelines is considered the safest means of transport.  PHMSA regulates all types of pipelines: gathering lines, transmission pipelines, and distribution lines.  The agency is responsible for “regulating the safety of design, construction, testing, operation, maintenance, and emergency response of U.S. oil and natural gas pipeline facilities” (U.S. Department of Transportation, 2020).  Protecting human lives and the environment from pipeline safety hazards are the main focus of PHMSA (U.S. Department of Transportation, 2020).       

       Integrity Management is a program instituted by PHMSA that requires pipeline operators to analyze and understand the environment and population in the area where the pipeline exists. Operators must be able to foresee the consequences of a pipeline failure to the local environment and community.  This proactive approach to pipeline safety and emergency management helps operators to prioritize inspections and scheduled maintenance and keeps them well-prepared in the event of a pipeline failure (U.S. Department of Transportation, 2020).

       In addition to PHMSA, other federal agencies involved in pipeline safety and security are the Department of Homeland Security (DHS), Transportation Security Administration (TSA), Department of Energy (DOE), and the Federal Energy Regulatory Commission (FERC).  State and local governments as well as industry experts also contribute to regulatory controls and standards.  Individual states must meet minimum federal safety regulations but can create stricter rules (U.S. Department of Transportation, 2020). 

       PHMSA’s Office of Pipeline Safety performs “field inspections of pipeline facilities and construction projects; inspections of operator management systems, procedures, and processes; and incident investigation” (U.S. Department of transportation, 2020).  When violations or safety hazards are found, the agency can force an operator to take corrective action (U.S. Department of Transportation, 2020).

       Operators of gas distribution systems must participate in the Gas Distribution Integrity Management Program (DIMP) which requires them to develop and put into practice a comprehensive integrity management program tailored to their individual distribution systems.  The purpose is to enhance safety by identifying risks, ranking them by severity, and implementing safety precautions to manage and eliminate those risks (U.S. Department of transportation, 2018).

       Chevron has developed a comprehensive Operational Excellence Management System which reflects its core values as a company.  Mike Wirth, Chairman of the Board and CEO, takes personal responsibility for the company’s performance.  His primary concern, when it comes to safety, is “to eliminate high-consequence personal and process safety events.  This means no fatalities or serious injuries and no fires, spills or explosions that can affect people or communities” (Chevron, 2018).

       Wirth’s focus is on three important areas: 1) understanding the safety risks involved in managing oil and gas operations; 2) identifying the safety measures needed to mitigate the risks; 3) implementing, maintaining, and improving those necessary safety measures (Chevron, 2018).

       The goals of Chevron’s Operational Excellence Management System are to protect “people and the environment” (Chevron, 2018), fulfill its mission “to be the global energy company most admired for its people, partnerships, and performance” (Chevron, 2018), and successfully manage “workforce safety and health, process safety, reliability and integrity, environment, efficiency, security, and stakeholders” (Chevron, 2018).

       To implement and maintain such a system requires the cooperation of all members of management and the workforce.  Everyone in the company must be accountable for their actions and the actions of others.  Everyone must be responsible for fostering a culture of safety and performance excellence (Chevron, 2018).

       Company accountability begins with its compliance with all health, environmental, and safety laws and regulations. Next, the company must comply with its own internal policies and procedures.  At the same time, company personnel must continually assess the company’s risk management program and make improvements as needed.  Assurance measures must be taken to ensure that safety precautions are kept in place to mitigate all identified risks.  The competency of the workforce must be kept up-to-date to ensure that quality management requirements are met.  The company must provide educational opportunities to keep the workforce informed of new policies, practices, and procedures.  The company must incorporate advanced technology into its operations to reduce the risk of human error.  Communication systems must be effective and reliable in order to convey information about potential chemical and biological safety hazards.  Contractors hired by the company must be in compliance with Chevron’s Business Conduct and Ethics Code and Operational Excellence Management System to maintain consistency and high-performance standards across the company.  There must be a competent system in place to report and investigate accidents; evaluate causes; implement new safety procedures; and communicate findings with management and the workforce.  Finally, an emergency management team must be prepared to respond at any time to a serious crisis that could harm property and human lives (Chevron, 2018).

       The reliability and integrity of wells, pipelines, and other facilities must be managed effectively to prevent safety hazards and operational losses.  Equipment must be inspected and maintained on a routine basis (Chevron, 2018).

       Chevron maintains a goal “to do business in environmentally responsible ways” (Chevron, 2018).  The company seeks to prevent all spills and accidental releases of gas and oil; to reduce air, water, and ground pollution; to conserve national resources and reduce greenhouse gases; to manage waste, especially waste produced by contractors; to dismantle company assets that are no longer used and restore the natural environment to its original pristine state.  The company keeps the public informed of its environmental management policies on its website (Chevron, 2018).

       Efficient use of energy and resources in order to drive down costs is an important part of Chevron’s Operational Excellence Management System.  Maintaining a secure physical and cyber environment prevents unnecessary and unwanted intrusions and safety hazards.  Engaging all stakeholders, including outside contractors, in the safety and performance goals of the company ensures that everyone connected with the company is on board (Chevron, 2018).

       The Operational Excellence Management System at Chevron depends on strong leaders and committed workers who are willing to work together as a team to implement, maintain, and improve the safeguards which mitigate risk.  “Typical safeguards include facility designs, mechanical devices, engineered systems, protective equipment, and execution of procedures” (Chevron, 2018).  Once risks are identified, personnel work together to eliminate them; create new policies and procedures to manage them; and provide personal protective equipment to protect workers from them (Chevron, 2018).

       Personnel are also expected to follow a code of conduct that was designed to reinforce safety and mitigate risk.  The two key tenets of this code are: “Do it safely or not at all” and “There is always time to do it right” (Chevron, 2018).  If all employees operate on a daily basis within the fundamental safety provisions of the Operational Excellence Management System, safety hazards should be minimized or avoided altogether (Chevron, 2018).

       Chevron’s website provides an excellent overview for the general public of its history, operations, financial status, environmental and safety management, ongoing projects, and vision for the future.  What it does not address are the real situations that come up and threaten the financial standing of the company and the Operational Excellence Management System it has put in place.

       The jewel in Chevron’s crown is the Gorgon Project, located off the coast of Western Australia.  Gorgon is one of the largest liquefied natural gas (LNG) projects in the world, with the capacity to produce 15.6 million tonnes of LNG per year.  The processing facilities are located on a one percent section of Barrow Island, a Class A Nature Reserve.  Chevron has invested an enormous amount of time and resources into preserving the integrity of its pipelines, processing facilities, and the environmental standards of Barrow Island.  The company has set out to prove that an oil and gas company can successfully operate while respecting and preserving the local environment (Chevron Australia, 2020).  

       From its very beginning in 2009, the Gorgon Project has been plagued by failures, safety hazards, engineering challenges, and excessive costs.  Originally, the project was supposed to cost $US37 billion, and the first LNG was projected to be produced in 2014.  By the time the first load of LNG was produced and shipped off to Asia in 2016, the final cost came in at $US54 billion (Boiling Cold, 2020).

       In 2009, there was a strong worldwide demand for LNG.  In early 2016, the price of petroleum products had fallen, and there was an excessive supply of LNG on the market.  Chevron was under pressure to complete Gorgon and produce its first load of LNG.  In order to meet Chevron Chief Executive John Watson’s deadline, “untreated feed gas traveled from the Jansz-Io gas field wellheads, 1350 [meters] below sea level off the edge of the continental shelf, to Barrow island, 130 [kilometers] away” (Boiling Cold, 2020).  Once the gas was treated and ready for cooling, “the feed gas ran through [a propane cooler] on a separate circuit” (Boiling Cold, 2020).  The propane gas in the cooler circulated “back to the compressor through a knockout drum” (Boiling Cold, 2020).  Nearly three weeks later, the fourth knockout drum failed, damaging the compressor.  Production was halted for three months (Boiling Cold, 2020).

       Chevron released a statement more than a week later that the failure would only require routine repairs, and all equipment and materials were available at the facilities.  In reality, the propane compressor was flown to Perth for repairs.  Three months after the failure, Chevron had not reported it to the Department of Mines and Petroleum (DMP), the safety regulator for the Barrow Island LNG plant (Boiling Cold, 2020).

       In August 2016, Chevron finally met with DMP officials to discuss the incident.  Chevron provided an analysis of what led up to the incident.  The most serious violation was the failure of workers to follow the company’s safety code and stop the cooling process when the propane compressor began to vibrate excessively (Boiling Cold, 2020).

       Another significant issue was the failure by engineers and operating technicians to evaluate and identify possible safety hazards with the plant’s start-up operation and then take measures to make changes to the design or procedures to mitigate risks (Boiling Cold, 2020).

       Other violations included workers with inadequate knowledge to start up the plant, fuzzy management responsibilities, and insufficient technical resources to deal with a problem (Boiling Cold, 2020).

       Chevron took corrective measures to fix the problems and satisfy the requirements set forth by the DMP, then issued a public statement to assure the public that they had taken action to ensure the safety of all people working at the plant (Boiling Cold, 2020).

       Part of Chevron’s environmental agreement with Western Australia was “to capture and store underground 40 percent of the [Gorgon] plant’s emissions through a sophisticated process known as geosequestration or carbon capture and storage” (Australian Broadcasting Corporation, 2018).  Chevron proudly brags about its CO2 injection project on its website.  But the reality shows something different.

       Chevron promised that between 5.5 and 8 million tonnes of CO2 would be injected into its underwater carbon storage project in the first two years of production on Barrow Island.  But seal failures and problems with corrosion delayed the CO2 injection project, leaving the Federal Government of Australia $AU60 million dollars poorer. As a result, all the gains in lower CO2 emissions made by the widespread use of solar power were wiped out.  A spokesperson for Chevron stated, “Our focus is on the safe commissioning and start-up of the carbon dioxide injection project and achieving a high percentage of injection over the 40-year life of the Gorgon project” (Australian Broadcasting Corporation, 2018).

       Chevron’s CO2 injection project was approved by Premier Colin Barnett on September 14, 2009. “The Barrow Island Act was the first legislation regulating carbon dioxide storage (geosequestration) in the world” (Department of Mines, Industry Regulation and Safety, 2019).  The project started injecting CO2 into the Dupuy Formation, a geological layer located more than two kilometers beneath Barrow Island, in August 2019.  Since then, the Department of Mines, Industry Regulation and Safety has been monitoring the project, making sure that Chevron stays in compliance with the Barrow Island Act and its Pipeline License (Department of Mines, Industry Regulation and Safety, 2019).

       When Chevron’s carbon dioxide system successfully started up in August 2019, Chevron Australia issued a press release reassuring the Australian public that it would continue to monitor all safety issues and fulfill its promise to reduce the Gorgon plant’s greenhouse gas emissions by 40 percent over the 40-year life of the project (Chevron Australia, 2019).

       When the coronavirus spread around the world early in 2020, the slumping oil and gas industry was hit with more problems.  The economic lockdowns put in place to stop the spread of the virus kept people at home, causing a backlog in equipment and parts orders, and a slowdown in preventative maintenance and repairs on wells, transmission pipelines, refineries, and gas distribution systems (Reuters, 2020).

       In order to cut costs, companies like Chevron and ExxonMobil began laying off workers, putting off maintenance and repair projects, and delaying start-up projects.  This put established wells, pipelines, refineries, and gas distribution systems at risk for future failure and safety hazards (Reuters, 2020).

       In July 2020, it was reported by the Australian media that routine maintenance at Barrow Island had uncovered thousands of cracks in eight propane kettles that had been sitting in storage for several years.  These kettles had been scheduled to be installed on LNG Train 2.  It has been speculated that the cracks were caused by water penetrating the thermal insulation surrounding the vessels.  The insulation was installed by overseas construction firms and then shipped to Australia (Boiling Cold, 2020).

       While repairing the cracks in the eight propane kettles, workers at Chevron discovered defective welds in those same kettles.  Executive Vice-President Jay Johnson told investment analysts that the defects occurred during the manufacturing process and not because they were poorly designed.  He claimed that repairs would be sufficient to make the vessels safe (Boiling Cold, 2020).

       Safety measures were put in place to mitigate risks in LNG Trains 1 and 3, but Chevron refused to reveal what those safety measures were or how workers would be safe while repairing LNG Train 2 (Boiling Cold, 2020).

       The company suffered a $US8.3 billion loss in the second quarter of 2020 due to problems at the Gorgon Project.  And it refused to explain how the 16 propane-filled kettles still operating were safe without being inspected for cracks and weld defects (Boiling Cold, 2020).

       In September, Chevron reported that it had given incorrect instructions to welders repairing the eight propane kettles on LNG Train 2.  Authorized personnel had neglected to inform welders that a post-weld heat treatment needed to be done, subjecting the weld to more cracking and failure (Boiling Cold, 2020).

       More delays in repairs have cost Chevron and its partners more than $AU500 million.  The continued problems at Gorgon have worried union leaders and workers alike.  The Department of Mines, Industry Regulation and Safety “gave Chevron permission to continue operating [LNG] Trains 1 and 3 under a plan where Train 1 would close for inspection of its kettles in early October and Train 3 would shut down in early January [2021]” (Boiling Cold, 2020).

       The company error occurred simultaneously with the final phase of its plan to lay off 20 to 30 percent of its Australian workforce due to losses incurred from COVID-19 lockdowns, a slumping oil and gas industry, and the expensive problems at Gorgon Project.  If repairs need to be done on Trains 1 and 3, the company will incur even more losses.  In order to recover some of its losses, Chevron plans to sell between $US5 billion and $US10 billion worth of assets (Boiling Cold, 2020).

       Publicly, Chevron does what it needs to do to keep a shining reputation, but the reality is a much different story.  Chevron’s lofty goals for itself magnify every mistake that it makes, from environmental violations to engineering and operational errors to investment losses.  Although  basically a sound company and a worthy employer, Chevron is in a tough position due to stricter environmental standards, COVID-19 restrictions, a slumping industry, and forces lined up against the use of fossil fuels.

References

Chevron. (2020). Chevron business conduct and ethics code. Retrieved from

https://www.chevron.com/-/media/shared-media/documents/chevronbusinessconductethics

       code.pdf

Chevron. (2018). Chevron operational excellence management system. Retrieved from

Chevron Australia. (2019). Safe start up and operation of the carbon dioxide injection system at

       the gorgon natural gas facility. Retrieved from https://australia.chevron.com/

       news/2019/carbon-dioxide-injection/

Department of Mines, Industry Regulation and Safety. (2019). Gorgon carbon dioxide injection

       project. Retrieved from https://www.dmp.wa.gov.au/Petroleum/Gorgon-CO2-injection-

       project-1600.aspx

Diss, K. (2018, June). How the gorgon gas plant could wipe out a year’s worth of australia’s

       solar emissions savings. Australian Broadcasting Corporation. Retrieved from

https://www.abc.net.au/news/2018-06-21/gorgon-gas-plant-wiping-out-a-year-of-solar-

       emission-savings/9890386.     

MBA Tutorials. (2020). Chevron mission and vision statement. Retrieved from

Milne, P. (2020, July). Gorgon’s catastrophic start-up. Boiling Cold. Retrieved from

https://www.boilingcold.com.au/gorgons-catastrophic-startup/

Milne, P. (2020, July). Cracks at chevron’s gorgon threaten safety and lng production.

       Boiling Cold. Retrieved from https://www.boilingcold.com.au/cracks-at-chevrons-gorgon-

       threaten-lng-production/

Milne, P. (2020, August). Gorgon weld problems raise safety questions chevron will not answer.

       Boiling Cold. Retrieved from https://www.boilingcold.com.au/gorgon-weld-problems-raise-

       safety-questions-chevron-will-not-answer/

Milne, P. (2020, September). Chevron to redo its botched gorgon weld repairs. Boiling Cold.

       Retrieved from https://www.boilingcold.com.au/chevron-to-redo-its-botched-gorgon-weld-

       repairs/

Milne, P. (2020, November). Chevron to restart gorgon lng train after $500m production loss.

       Retrieved from https://www.boilingcold.com.au/chevron-to-restart-gorgon-lng-train-after-

       500m-production-loss/  

U.S. Department of Transportation. (2020). About phmsa. Retrieved from

https://www.phmsa.dot.gov/about-phmsa/phmsa-mission/

U.S. Department of Transportation. (2018). Gas distribution integrity management. Retrieved

       from https://www.phmsa.dot.gov/technical-resources/pipeline/gas-distribution-integrity-   

       management-program/

Yagova, O., George, L., Bozorgmehr, S. (2020, May). Coronavirus creates repair headache for

       Oil and gas industry. Reuters. Retrieved from

https://www.reuters.com/article/us-health-coronavirus-oil-maintenance-an/coronavirus-

       creates-repair-headache-for-oil-and-gas-industry-idUSKBN22V0LT.

Dawn Pisturino

Thomas Edison State University

December 16, 2020; April 20, 2022

Copyright 2020-2022 Dawn Pisturino. All Rights Reserved.

Leave a comment »

Gas Pipeline Maintenance and Safety

       The main goal of a natural gas distribution company is to deliver affordable energy to customers in a safe manner at the lowest possible cost.  Utility companies in the United States are private businesses, even though they are regulated by local, state, and federal agencies, and must make a reasonable profit in order to pay employees, finance support services, expand services, and keep the natural gas distribution system well-maintained and safe (Busby, 1997, p. 45).

       Before a pipeline is even built, it must be approved by the Federal Energy Regulatory Commission (FERC).  Companies must submit their “construction plans and economic studies that demonstrate a demand for gas in the area to be served and an available, adequate supply of gas” (Busby, 1997, p. 45).  Companies must also detail the pipeline’s environmental impact on the local surroundings.  Once the FERC approves the pipeline, it issues a certificate to the company (Busby, 1997, p. 44-45).

       The next steps are to purchase the right-of-way and lease property along the path of the pipeline.  Peculiarities in the local environment, the length of the pipeline, the local population, expected customer needs, and the projected load dictate what choices the design engineers make – gas pressure, pipe diameter, pipe wall thickness, type and spacing of compressors, and more. Computer software now exists to assist engineers to choose the right location and calculate the right specifications.  Once all this is done, the appropriate pipes, valves, and other parts and equipment are ordered (Busby, 1997, p. 45).

       Ditching machines dig deep trenches in the ground, and sections of pipe are laid out along the trench.  The sections of pipe are held in place while welders weld the lengths of steel pipe into one long pipeline.  After the pieces of pipe are welded, “the outside surface of the pipe is cleaned, coated, and wrapped to inhibit external corrosion” (Busby, 1997, p. 46).  Frequently, these pipes have been coated inside at the steel mill to prevent corrosion; to aid internal inspection of the pipe; to reduce water retention after hydrostatic testing; to reduce absorption of gas odorants; to create a friction-free surface.  After the pipe is welded, coated, and inspected, it is lowered into the trench, where it is re-covered with appropriate backfill (Busby, 1997, p. 46-47). 

       At any point along this timeline, safety issues can come up which might not become apparent until months or years later.  A faulty pipe, an inappropriate valve, a design flaw, a pipeline that is allowed to carry too much pressure, an improper weld or inappropriate backfill, may lead to a dangerous break or leak later on down the line.

       Safety is the paramount concern in pipeline operations.  “Pipelines require regular patrol, inspection, and maintenance, including internal cleaning and checking for signs of gas leaks” (Busby, 1997, p. 51-52).  A major pipeline disaster could lead to political and economic repercussions, as well as environmental pollution and threats to property and human lives (Busby, 1997, p. 51-52).

       The most common cause of pipeline damage is third-party damage, caused by contractors and other people digging too close to natural gas lines.  Any damage to the pipe, the coating, or the welded joints can cause leakage and breakage.  Most states now have requirements for contractors to determine the location of utility lines before they dig new trenches (Busby, 1997, p. 52).

       Corrosion is the second most common cause of pipeline damage. “To minimize corrosion, pipeline companies install electrical devices called cathodic protection systems, which inhibit electrochemical reactions between the pipe and surrounding materials” (Busby, 1997, p. 52).  Any kind of rust, cracking, or pitting can cause pipe breakage or leakage.  If the original coating on the pipe was defective before use, the problem may go undetected for a long time (Busby, 1997, p. 52).

       A hydrostatic test can prove whether or not a pipeline is defective or needs repairs.  The gas is removed from the pipeline and the pipe is filled with high-pressure water.  But this is an expensive procedure so pipeline operators use a device called a pig that travels through the pipeline to remove dirt and corrosion.  These materials can cause damage to the pipes, regulators, and meters.  More advanced pigs (smart pigs) use technology that can measure pipe wall thickness and other abnormalities which can indicate corrosion and other damage (Busby, 1997, p. 52-53).

       Aerial patrols of transmission lines make routine surveys that can detect signs of leakage, such as patches of yellow vegetation in areas that are normally green; construction projects that may have damaged the line; or bare pipes that need to be re-covered (Busby, 1997, p. 53).

       Leak detectors can detect gas leaks above and below the ground.  Workers can detect leaks by the presence of brown or yellow vegetation.  By digging small holes at these locations, gas leaks can be detected by visual inspection or the odor of gas.  Inline cameras are used to detect leaks inside pipelines (Busby, 1997, p. 67).

       Workers routinely survey pipelines for leaks on a set schedule.  Public buildings, such as schools, hospitals, government offices, and theaters, are given priority attention.  Serious leaks are repaired immediately.  Companies are obligated to investigate customer reports of gas odor, leaks, explosion, or fire in a reasonable amount of time, according to the severity of the leak (Busby, 1997, p. 67).  Natural gas utilities post information on their websites educating consumers on detecting and reporting natural gas leaks.

       Mains and other distribution pipes made of plastic are repaired by shutting off the gas and squeezing closed the pipe on each side of the leak.  The leaking section is replaced with new pre-tested plastic piping and appropriate connections made on each end. “Mechanical couplings are commonly used for this purpose” (U.S. Department of Transportation, 2017, p. VI-20).  Repairs must be done by qualified technicians (Busby, 1997, p. 69). 

       Leaks in steel pipes can be repaired with “leak clamp[s] applied directly over the leak” (U.S. Department of Transportation, 2017, p. VI-20).  If multiple leaks are found, the easiest way to repair the pipe is to replace it altogether with pre-tested pipe that has been coated, wrapped, and strengthened by cathodic protection.  Steel pipe can also “be replaced by inserting PE pipe manufactured according to ASTM D2513 in the existing line and making the appropriate connections at both ends” (U.S. Department of Transportation, 2017, p. VI-20).  Qualified technicians must be used to make the repairs who will use the proper connections, provide adequate support, and consider thermal expansion and contraction of the PE pipe (U.S. Department of Transportation, 2017, p. VI-20).

       Instead of repairing cast iron natural gas pipes, the U.S. Department of Transportation’s Pipeline and Hazardous Materials Safety Administration (PHMSA) instituted programs to identify, manage, and replace cast and wrought iron pipelines as early as 2009.  The Distribution Integrity Management Programs (DIMP) became mandatory for all U.S. pipeline operators in 2011 (U.S. Department of Transportation, 2020).

       In 2012, PHMSA urged state pipeline safety agencies to “monitor cast iron replacement programs, establish accelerated leak surveys, focus safety efforts on high-risk pipe, incentivize pipeline rehabilitation, repair and replacement programs, strengthen inspection, accident investigation, and enforcement actions, and install home methane gas alarms” (U.S. Department of Transportation, 2020).  While cast iron gas pipes can be repaired using PE or steel pipe and the appropriate connections by qualified technicians, the official recommendation is to replace these pipes altogether.

       The United States Department of Labor’s Occupational Safety and Health Administration (OSHA) is restricted by Section 4(b)(1) of the Occupational Safety and Health Act when it comes to oversight of oil and gas pipelines.  OSHA’s authority is largely limited to contractors hired by pipeline owners and operators and their workers when it comes to occupational health and safety hazards (United States Department of Labor, 2004).

       The U.S. Department of Transportation’s Pipeline and Hazardous Materials Safety Administration (PHMSA) is the primary regulator of oil and gas pipelines in the United States.  The administration sponsors a Gas Distribution Integrity Management Program which requires all operators to create a Distribution Integrity Management Program (DIMP) that includes the following elements: “knowledge; identify threats; evaluate and rank risks; identify and implement measures to address risks; measure performance, monitor results, and evaluate effectiveness; periodically evaluate and improve program; report results” (U.S. Department of Transportation, 2020).

       Gas distribution systems are a necessary part of modern life.  With all stakeholders working together to achieve optimal safety, natural gas will continue to be a safe, low-cost, efficient form of energy.

References

Busby, R.L. (Ed.). (1999). Natural Gas in Nontechnical Language. Tulsa, OK: PennWell.

U.S. Department of Transportation. (2017). Guidance Manual for Operators of Small Natural

       Gas Systems. Oklahoma City, OK: U.S. Department of Transportation.

U.S. Department of Transportation. (2020). Pipeline replacement. Retrieved from

https://www.phmsa.dot.gov/data-and-statistics/pipeline-replacement/

U.S. Department of Transportation. (2020). Gas distribution integrity management. Retrieved

       From https://www.phmsa.dot.gov/technical-resources/pipeline/gas-distribution-integrity-

       management-program/

U.S. Department of Labor. (2004). Laws and regulations. Retrieved from

https://www.osha.gov/laws-regs/standardinterpretations/2004-05-28-0

Dawn Pisturino

Thomas Edison State University

December 8, 2020; April 19, 2022

Copyright 2020-2022 Dawn Pisturino. All Rights Reserved.

15 Comments »

Local Natural Gas Distribution Systems

(Photo: Unisource Energy Services)

If you’ve ever wondered where your natural gas comes from and how it gets to your house or business, here’s an example of how a local natural gas distribution system works. Regulations and construction requirements may differ from state to state.

Case Study: Local Natural Gas Distribution in Kingman, Arizona

Unisource Energy Services (UES) in Kingman, Arizona receives natural gas from the Transwestern Pipeline, which originates in Texas.  The steel transmission pipeline is 30 inches in diameter and operates at pressures from 200 to 1500 psi.  The pressure is reduced to 60 psi at UNS regulator stations and then reduced again to 0.25 psi before it enters the service lines that connect to home appliances (Unisource Energy Services, 2019; Energy Transfer, 2020).

In Arizona, there are four compressor stations along the Transwestern Pipeline at Klagetoh, Leupp, Flagstaff, and Seligman.  The compressors were built by USA Compression (Energy Transfer, 2020; USA Compression, 2020).

“Natural gas is compressed for transmission to minimize the size and cost of the pipe required to transport it” (Busby, 2017, p. 49).  Friction inside the pipe reduces the pressure and flow rate.  The gas is re-compressed at compressor stations in order to boost the pressure in the line.  Compressor stations are generally found every 50 to 100 miles along a pipeline.  They are a crucial part of the transport system that keeps the natural gas flowing through the pipe at the right pressure and flow rate.  Air is mixed in with the gas to lower emissions from the compressor stations (Busby, 2017, p. 49, 51).

Reciprocating compressors use high compression ratios but have limited capacities.  They are driven by internal combustion natural gas engines (Busby, 2017, p. 49).

Centrifugal compressors use lower compression ratios but have high capacities.  They rotate at 4,000 to 7,000 rpm and are driven by natural gas turbines.  They are energy efficient and cost less to install and use (Busby, 2017, p. 49-50).

The Transwestern Pipeline has an interconnect point at Kingman, Arizona, at legal description 21 N, 16 W, in Section 19.  There is a measuring station there that measures the amount of gas delivered to the Kingman interconnect (Energy Transfer, 2020).

Transwestern utilizes all types of meters in its measuring stations: orifice meters to measure gas received or delivered at an interconnect; turbine meters or ultrasonic meters to measure displaced gas; and coriolus meters, all according to the AGA Gas Measurement Manual (Energy Transfer, 2020).

“Metering of gas flow is an important function of pipeline gas operations” (Busby, 2017, p. 51) because customers along the line pay for the amount of natural gas they receive.  Meters must be accurate in order to ensure accurate and reliable billing (Busby, 2017, p. 49).

Many natural gas companies handle seasonal demand by storing natural gas in underground facilities or storing it as liquefied natural gas (LNG).  “Peak shaving is one of the most common domestic uses for LNG today” (ADI Analytics, 2015).  When seasonal demand (usually in the winter) requires a bigger load of natural gas, the “LNG is regasified and sent to the distribution pipelines” (Maverick Engineering, 2016).

Natural gas supplies can also be augmented with synthetic natural gas (SNG) during seasonal demand.  SNG is actually propane-air or liquefied petroleum gas air (LP-air) which “is created by combining vaporized LPG with compressed air” (Transtech Energy, 2020).  During seasonal demand, peak shaving facilities inject SNG into the natural gas distribution system to augment the real natural gas in order to meet increased demand (Transtech Energy, 2020).

Another way to increase the natural gas supply during peak demand is line packing.  This requires installing oversized pipes in transmission lines, which is incredibly expensive, and not always worth the cost (INGAA Foundation, 1996).

Unisource Energy Services has no storage facilities so it must plan ahead and estimate how much natural gas it will need to meet the winter peak demand.  Then it must contract with a reliable natural gas supplier, schedule the deliveries, and submit its Gas Supply Plan to the Arizona Corporation Commission.  This arrangement is called an asset management agreement (AMA) (American Gas Association, 2019; Arizona Corporation Commission, 2017).

As local natural gas distribution companies grow, they must install new lines to accommodate new customers.  The state of Arizona requires that all excavations be reported to the state at least 2 days before the actual trenching.  All utility lines must be discovered and clearly marked.  Only manual digging can be used within 24 inches of marked lines (Arizona 811, 2020).  These requirements were put in place for safety reasons, to prevent damage to buildings and injuries to humans.

Joint trench requirements can differ from city to city, county to county, and state to state. But a typical safe guideline is as follows: a trench at least 36 inches deep and 18 inches wide; 24 inches between gas and electric lines and between natural gas and water lines; 12 inches between natural gas and communication lines; 24 inches between natural gas and sewer lines (Arizona Public Service Electric, 1995; Lane Electric Cooperative, 2020).

Unisource Energy Services is required by law to follow state and local construction requirements and trenching laws.  The company uses plastic pipes 0.5 to 8 inches in diameter and coated steel pipes 0.75 to 16 inches in diameter (Unisource Energy Services, 2019).  Like all natural gas companies, company engineers must consider line pressures, the length of the line, and estimated load when deciding which pipes to use.

References

ADI Analytics. (2015). A new role for small-scale and peak shaving lng infrastructure.

       Retrieved from https://www.adi-analytics.com/2015/06/03/a-new-role-for-small-scale-and-

       peak-shaving-lng-infrastructure/

American Gas Association. (2019). LDC supply portfolio management during the 2018-2019

       winter heating season. Retrieved from

Arizona 811. (2020). Proper planning. Retrieved from https://www.arizona811.com.

Arizona Corporation Commission. (2017). Winter preparedness. Retrieved from

https://www.azcc.gov/docs/default-source/utilities-files/gas/winter-preparedness-2017/uns-

       gas-2017-winter-prepardness.pdf?sfvrsn=daa79b6f_2.

Arizona Public Service Electric. (1995). Trenching requirements. Retrieved from

https://www.aps.com/en/About/Construction-and-Power-Line-Siting/Construction-Services.

Busby, R.L. (Ed.). (1999). Natural Gas in Nontechnical Language. Tulsa, OK: PennWell.

Energy Transfer. (2020). Natural gas. Retrieved from

https://www.energytransfer.com/natural-gas.

INGAA Foundation. (1996). The use of liquefied natural gas for peaking service. Retrieved from

https://www.ingaa.org/File.aspx?id=21698.

Lane Electric Cooperative. (2020). Typical trench detail. Retrieved from

Maverick Engineering. (2016). Oil & gas: LNG: Peak shaving facilities. Retrieved from

https://www.maveng.com/index.php/business-streams/oil-gas/lng/peak-shaving-facilities.

Transtech Energy. (2020). SNG peak shaving system design & implementation. Retrieved from

https://www.transtechenergy.com/peak-shaving-systems.

Unisource Energy Services. (2019). Construction services. Retrieved from

USA Compression. (2020). Gas compression. Retrieved from

Dawn Pisturino

Thomas Edison State University

November 19, 2020; April 18, 2022

Copyright 2020-2022 Dawn Pisturino. All Rights Reserved.

19 Comments »

Guest Blog: Culture of Pub Music/Ariel Pisturino

(Dublin pub musicians. Photo by Jeremy King, Flickr.)
Culture of Pub Music

by Ariel Pisturino

In 2019, I spent a few days in Dublin, Ireland, exploring the city with my partner. Ireland is a magical place, full of history and folklore. One night, we were out and about and it started to drizzle, as it does in that part of the world. Looking around for a place to duck into, we started to hear some raucous music. We stuffed ourselves into this little pub. It was PACKED with wall-to-wall people, and everyone’s attention was on the group of musicians playing traditional Irish music on traditional instruments. It was such fun and a different experience from being in America. It got me wondering about the culture of Irish music.

Traditional Irish music began as an oral tradition, with generations learning by ear and passing it down. It’s a tradition that still exists today. Irish music originated with the Celts about 2,000 years ago. The Celts were influenced by music from the East. It is even thought that the traditional Irish harp originated in Egypt. The harp was the most popular instrument and harpists were employed to compose music for noble people. When invaders came to Ireland in the early 1600’s, that forced people to flee the country. Harpists roamed through Europe, playing music wherever they could.

The most famous composer/harpist was Turlough O’Carolan (b.1670-d.1738). He was a blind harpist, composer, and singer. He traveled all over Ireland for 50 years, playing his music. He is considered Ireland’s national composer.

The main traditional instruments are fiddle, Celtic harp, Irish flute, penny whistle, uilleann pipes and bodhrán. More recently the Irish bouzouki, acoustic guitar, mandolin and tenor banjo have found their way into the playing of traditional music.

Irish pub songs are part of a tradition of storytelling by the fireside. People used to visit their neighbours, friends and relatives in the evenings after work or on a Sunday after mass, sit with them by the fireside, and share stories. In between the stories there would be songs, usually unaccompanied.

There was a big revival of pub music during the 1960’s with popular bands singing traditional Irish music, usually accompanied by guitar. (Think: The Chieftains.) In the 1970’s, local singers started forming singing clubs to focus on the traditional songs. One of the first singing sessions was hosted in Dublin during the 1980’s. These sessions became more regular and popular amongst pubs to host these groups, and that’s how pub music evolved into what we experience today.

Previously published in the unSUNg Concerts Newsletter, March 17, 2022

Ariel Pisturino graduated from the Thornton School of Music at USC with a Masters in Vocal Music. She teaches part-time at three different colleges and universities, privately in her own music studio, and performs with various opera companies and vocal groups in the Los Angeles area. She is the Curator and Artistic Director of the unSUNg Concert Series, which is dedicated to reviving previously-composed, forgotten vocal music and sponsoring new composers and young vocal artists.

Ariel Pisturino as Leonora in Verdi’s Il Trovatore:

Ariel also does a lot of church singing and concerts:

unSUNg Concert Series: http://www.unsungconcerts.com

Ariel’s current project: Musical Director for the student production of Working!:

Find Ariel on Facebook, LinkedIn, YouTube, and SoundCloud.

Ariel Pisturino: http://www.arielpisturino.com

~

Dawn Pisturino

March 23, 2022

Copyright 2022 Ariel Pisturino. All Rights Reserved.

Copyright 2022 Dawn Pisturino. All Rights Reserved.

16 Comments »

Geological Expertise in Oil and Gas Exploration

(Graphic from Oil & Gas Portal)

Geologists use a variety of tools to discover underground pockets of crude oil and natural gas. Without their expertise, the oil and gas industry would not exist.

Exploration

The first thing geologists must determine is the location of geological formations that can trap oil and gas underground. They do this by determining what kind of sedimentary rocks form the reservoir and what kind of chemical elements are present in the rocks. If sandstones and carbonates are present, this is a good indication that ancient organic matter once existed in that area which decayed and formed hydrocarbons. The hydrocarbons became trapped underground in the form of crude oil and natural gas (Busby, 1999, p. 15).

Geological methods include drawing maps of the surface and subsurface region and gathering rock samples.

Topographical maps in 2-D and 3-D visualize layers of rock and the horizontal and vertical placement of those layers. Rock formations are given a two-part name, the geographical location, which is usually the name of the nearby town, and the predominant type of rock (Busby, 1999, p. 19).

Subsurface maps include three elements: structural, which shows the elevation of rock layers; isopach, which indicates thickness; and lithofacies, which reveal variations in a single layer of rock (Busby, 1999, p. 20).

When geologists take rock samples, they extract samples from the core and gather “cuttings” (rock chips) for “assessing the formation’s lithology, hydrocarbon content, and ability to hold and produce gas” (Busby, 1999, p. 20). If they can figure out how the rock layers were formed, they can determine if the conditions were right for “the generation, accumulation, and trapping of hydrocarbons” (Busby, 1999, p. 21).

Geochemical methods use chemical and bacterial analyses of soil and water samples from the surface and the area around underground gas and oil deposits to determine the presence of hydrocarbons. “Micro-seeps” of petroleum can be detected in this way (Busby, 1999, p. 21).

Vitrinite reflectance uses a reflectance microscope to measure the percentage of light which is reflected from vitrinite (plant organic matter found in shale). The percentage can indicate the presence of gas and oil (Busby, 1999, p. 21).

Geophysical methods use sound waves (seismic vibration) to “determine the depth, thickness, and structure of subsurface rock layers and whether they are capable of trapping natural gas and crude oil” (Busby, 1999, p. 22). Computers are used to gather and analyze the data. Geologists can now use 2D, 3D, and 4D seismic imaging in their analysis (Natural Gas, 2013).

On land, explosives and vibrations are used to generate sound waves. The energy that bounces off the rock layers is detected as echoes by sensors called geophones (jugs) (Busby, 1999, p. 23).

Bright spots and flat spots can reveal where deposits of gas-oil and gas-water deposits might exist underground. Amplitude variation with offset (AVO) and geology related imaging programs (GRIP) can enhance the resolution and analysis of bright spots (Busby, 1999, p. 24).

“Cross-well” seismic technology uses seismic energy in one well and sensors in nearby wells to retrieve high-resolution images that have been used successfully in determining the presence of crude oil. It is now being used in natural gas exploration (Busby, 1999, p. 24).

Gravity meters are used to detect salt domes and other rock formations capable of trapping gas and oil. Magnetometers detect the thickness of basement rock and find faults. Computer models create hypothetical pictures of subsurface structures from mathematical computations (Busby, 1999, p. 25).

Drilling

Once geologists determine the geological and economic feasibility of drilling a well, a group of geologists, geophysicists, and engineers pinpoint the site for the well and its potential reservoir. They decide how deep the well should be. The average well is about 5,800 feet deep in the United States. The drilling company must then get permission to drill from the owners of the land and determine who owns the mineral rights.  They sign a lease to use the land for a certain length of time.  The drilling company then breaks ground (spudding) and keeps well logs (measurements) to determine the possibility of gas and oil formation and the porosity and permeability of the rock. The contractors who own the drilling rigs sign an agreement to drill to a certain depth and detail what equipment they will need. A pit is dug at the site and lined with plastic that holds unnecessary materials (Busby, 1999, p. 29-30).

Rotary drills, driven by a diesel engine, are the most common type of drill used because they can drill hundreds and even thousands of feet per day. The drill bit must be changed after 40 to 60 hours of drilling. Other drilling techniques include directional drilling, which allows drilling in multiple directions, horizontal drilling, which is used to enhance gas recovery and to inject fracturing fluids, and offshore drilling, which uses special equipment to drill in ocean water (Busby, 1999, p. 31-35).

Some of the drilling problems that come up include drilling a dry hold; a breakage inside the well; things falling into the well; and high pressures underground causing gas or water to flow into the well, changing the balance of the pressure in the well. Drilling must be halted then and the problem corrected (Busby, 1999, p.33).

Geologists use various tests to measure the probability that the well will produce enough oil and gas. Drilling-time measurements measure the rate of the bit’s penetration into the rock; mud logs measure the chemistry of mud and rock cuttings, looking for traces of gas; wireline logs sense electrical, radioactive, and sonic properties of rocks and fluids; electrical logs test rock for resistivity; gamma ray logs measure radioactivity; neutron logs measure rock density; caliper logs test the type of rock; dip logs look for the placement of rock layers; sonic/acoustic velocity logs measure the speed at which sound travels through rock. Traditionally, these tests were conducted on bare, uncased wells. But new technology allows testing to be done with the casing in place (Busby, 1999, p. 36-37).

If the well comes up dry, the well is plugged up and abandoned. If the well holds promise of a productive well, the bare well is “cased, or lined with metal pipe to seal it from the rock” (Busby, 1999, p.29). A foundation of cement is created. Then the casing is drilled with holes so gas can flow into the well. The flow rate of the gas is measured, and if productive, valves and fittings are installed in order to control the flow. Oil and gas products are separated at the wellhead. A gathering system is built after several wells are completed. Flow lines gather gas from several wells and transport it to a centralized processing facility (Busby, 1999, p. 37-38).

Transmission

“The pipeline industry carries natural gas from producers in the field to distribution companies and to some large industrial customers” (Busby, 1999, p. 43) through large pipes with high pressures, from 500 to 1,000 psi or 3,400 to 6,900 psi). Compressor stations along the lines maintain the pressures in the pipes. “As of the 1990s, more than 300,000 miles of gas pipelines criss-cross the United States, serving nearly 60 million gas customers” (Busby, 1999, p. 43).

Pipes are laid in trenches and coated inside with chemicals to prevent corrosion, improve light reflection, reduce water retention, reduce absorption of gas odorants, and to improve gas flow (Busby, 1999, p. 46-47).

Gas demand depends on weather, the season, and its use in power generation. Pipeline operators try to spread the costs over the whole year. Gas meters are used “to reduce costs and increase the accuracy of gas flow measurement” (Busby, 1999, p. 51).

Pipeline inspection and maintenance have to be done on a regular basis to detect gas leaks, address corrosion, repair damage, and to keep the gas flowing smoothly (Busby, 1999, p.  51-53).

Economic Concerns

During exploration, there is no guarantee that all the money spent on research, testing, and drilling will be recouped. If a well is productive, royalties must be paid to the owner of the mineral rights after all production costs are paid. State and federal governments regulate how many wells can exist per 640 acres and how much gas and oil can be produced over a certain time period. Offshore drilling, which has become more common, is very expensive because these oil rigs use special equipment and can drill as deep as 10,400 feet. When wells are losing pressure and running dry, companies must spend money on well stimulation. In fact, companies give priority to this because it costs less than exploring for new wells. It’s been estimated that the oil and gas companies spend roughly $5 billion on treating natural gas before it is ever transmitted through a pipeline. Pipelines and compressor stations must be built, inspected, repaired, and maintained. Environmental regulations cost companies money on research and new technologies (Busby, 1999, p. 15-54).

If oil and gas supplies diminish or are suddenly cut off, access to energy is decreased, and costs sky-rocket. When pipelines break or oil rigs are damaged or destroyed, this causes a disruption in the oil and gas supply. If the disruption lasts long enough, it can raise costs to the consumer. Political conflicts affect oil and gas supplies, energy costs, and the ability of companies to find new sources (Busby, 1999, p.15-54).

Dawn Pisturino

Thomas Edison State University

October 22, 2020; March 18, 2022

Copyright 2020-2022 Dawn Pisturino. All Rights Reserved!

Busby, R.L. (Ed.). (1999). Natural Gas in Nontechnical Language. Tulsa, OK: PennWell.

Natural Gas. (2013). Natural gas and the environment. Retrieved from

       http://www.naturalgas.org

15 Comments »

%d bloggers like this: